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Problem formulation

· (Ω,F ,F,P), F := {Ft , 0 ≤ t ≤ T} and W a d-dim. BM,

· ∀ (t, x) ∈ [0,T ]× (0,∞)d , T > 0 and for s ≥ t:

X t,x
s = x +

∫ s

t
µ(r ,X t,x

r )dr +

∫ s

t
σ(r ,X t,x

r )dWr ,

with

µ : [0,T ]× (0,∞)d → Rd

andσ : [0,T ]× (0,∞)d →Md Lipschitz continuous ,

· σ is invertible andλ := σ−1µ is bounded,
· Qt,x ∼ P is unique and is s.t. dP

dQt,x
= Qt,x ,1 where for s ≥ t:

dQt,x ,1(s) = λ(s,Xt,x(s))Qt,x ,1(s)dW
Qt,x
s ∈ (0,∞),

Qt,x ,1(t) = 1 .
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Problem formulation (cont.)

An admissible financial strategy is a d-dimensional predictable
process ν s.t.

EQt,x

[∫ T

t
|ν>r σ(r ,X t,x

r )|2dr
]
<∞ ,

and the corresponding wealth process

Y t,x ,y ,ν := y +

∫ ·
t
ν>r dX

t,x
r ≥ 0 , on [t,T ] ,

given (t, x) and y ≥ 0.

Ut,x ,y is the collection of admissible financial strategies.
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Problem formulation (cont.)

Fix a finite collection of times

Tt := {t0 = 0 ≤ · · · ≤ ti ≤ · · · ≤ tn = T} ∩ (t,T ] ,

together with non-negative payoff functions

x ∈ (0,∞)d 7→ g(ti , x), Lipschitz continuous for all i ≤ n .

The quantile hedging problem is

v(t, x , p) := inf Γ(t, x , p) ,

where

Γ(t, x , p)

:=

{
y ≥ 0 : ∃ ν ∈ Ut,x ,y s.t. P

[ ⋂
s∈Tt

{Y t,x ,y ,ν
s ≥ g(s,X t,x

s )}

]
≥ p

}
.
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Problem formulation (cont.)

Remark (Preliminary remarks)

Meaning of v(t, ·, 1)...

v(t, x , 1) = EQt,x [(v ∨ g)(ti+1,X
t,x
ti+1

, 1)] , for t ∈ [ti , ti+1) ,

with i < n and

g(t, x , p) := g(t, x)1{0<p≤1} +∞1{p>1} , for p ∈ R .

p 7→ v(·, p) is non-decreasing.

v(·, p) = 0 if p ≤ pmin(t, x) where

pmin(t, x) := P[g(s,X t,x
s )1{s<T} = 0 for all s ∈ Tt ] .

Hyp: pmin(t, ·) < 1, for t < T ⇒ v(t, x , 1) > 0 , for t < T .
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What can we find in the literature?

(A) Markovian Framework:
(1) Incomplete market case:
(a) European Case: Soner and Touzi in [7] and [8], Bouchard,
Elie and Touzi in [2],
(b) American Case: Bouchard and Vu in [3],
(2) Complete market case :
(a) European Case: Bouchard, Elie and Touzi in [2] and Föllmer
and Leukert in [5].

(B) Non-Markovian Framework:
Bouchard, Elie and Reveillac in [1] and Jiao, Klopfenstein and
Tankov in [6].
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Problem reduction

Before all reduce the initial problem to a standard stochastic target
one (see [2])......

To this aim introduce the set At,p of square integrable predictable
processes such that

Pt,p,α := p +

∫ ·
t
α>r dWr ∈ [0, 1] , on [t,T ] .

We denote Ût,x ,y ,p := Ut,x ,y ×At,p.

Proposition

Fix (t, x , p) ∈ [0,T ]× (0,∞)d × [0, 1], then

Γ(t, x , p) =

{
y ≥ 0 : ∃ (ν, α) ∈ Ût,x ,y ,p s.t.

Y t,x ,y ,ν ≥ g(·,X t,x)1{Pt,p,α>0} on Tt

}
. (1)
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Problem reduction (cont.)

Proof. Obvious at T . Fix t < T .

Let y ∈ Γ̄(t, x , p) with Γ̄ the RHS in (1) and fix (ν, α) ∈ Ût,x ,y ,p
s.t. Y t,x ,y ,ν ≥ g(·,X t,x ,Pt,p,α) on Tt .

Then, {Y t,x ,y ,ν ≥ g(·,X t,x)} ⊃ {Pt,p,α > 0} on Tt . Since
Pt,p,α ∈ [0, 1] and 1{Pt,p,α>0} ≥ Pt,p,α, we have

P

[ ⋂
s∈Tt

{Y t,x ,y ,ν
s ≥ g(s,X t,x

s )}

]
≥ P

[ ⋂
s∈Tt

{Pt,p,α
s > 0}

]

≥ E

Pt,p,α
T

∏
s∈Tt\{T}

1{Pt,p,α
s >0}

 .
Noticing that the process Pt,p,α is a martingale, for s ∈ Tt ,
{Pt,p,α

s = 0} ⊂ {Pt,p,α
T = 0} we obtain y ∈ Γ(t, x , p).
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Problem reduction (cont.)

Proof. (cont.) Fix y ∈ Γ(t, x , p) and choose ν ∈ Ut,x ,p s.t.
p′ := P

[⋂
s∈Tt
{Y t,x ,y ,ν

s ≥ g(s,X t,x
s )}

]
≥ p. By the martingale

representation theorem, we can find α ∈ At,p′ such that

1⋂
s∈Tt {Y

t,x,y,ν
s ≥g(s,X t,x

s )} = Pt,p′,α
T ≥ Pt,p,α

T .

Modifying appropriately α we have α ∈ At,p. Moreover

1{Y t,x,y,ν
s ≥g(s,X t,x

s )} ≥ Pt,p,α
T , s ∈ Tt .

Now take the conditional expectation and use the fact that Pt,p,α

is a martingale to get

1{Y t,x,y,ν≥g(·,X t,x )} ≥ Pt,p,α ⇔ Y t,x ,y ,ν ≥ g(·,X t,x)1{Pt,p,α>0} on Tt .

Hence, y ∈ Γ̄(t, x , p).
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Dynamic programming

A first way to compute the value function v ...

Theorem (Dynamic Programming)

Fix 0 ≤ i ≤ n − 1 and (t, x , p) ∈ [ti , ti+1)× (0,∞)d × [0, 1],

v(t, x , p) = inf
α∈At,p

EQt,x
[
(v ∨ g)

(
ti+1,X

t,x
ti+1

,Pt,p,α
ti+1

)]
.

Standard arguments should lead to a characterization of v as a
viscosity solution on each interval [ti , ti+1), i < n of

sup
α∈Rd

{
−∂tϕ+ α>λDpϕ

−1
2

(
Tr[σσ>D2

xxϕ] + 2 Tr[α>σ>D2
xpϕ] + |α|2D2

ppϕ
)} = 0 ,

with the boundary condition

v(ti+1−, ·) = (v ∨ g)(ti+1, ·) .
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Dual backward algorithm: intuition of the main result

As with Bouchard, Elie and Touzi in [2] for n = 1, take the Fenchel
transform v ] of v , i.e.

v ](t, x , q) := sup
p∈R

(pq − v(t, x , p)) ,

to deduce that v ] should be a viscosity solution of the linear PDE
on each interval [ti , ti+1), i < n of

−∂tϕ−
1

2

(
Tr[σσ>D2

xxϕ] + 2q Tr[λ>σ>D2
xqϕ] + |λ|2q2D2

qqϕ
)

= 0 ,

with the boundary condition

v ](ti+1−, ·) = (v ∨ g)](ti+1, ·) .
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Dual backward algorithm: intuition of the main result
(cont.) and main result

By the Feynman-Kac representation this corresponds to the
following backward algorithm for i < n{

w(T , x , q) := q +∞1{q<0} ,

w(t, x , q) := EQt,x
[
(w ] ∨ g)](ti+1,X

t,x
ti+1

,Qt,x ,q
ti+1

)
]
t ∈ [ti , ti+1) ,

Main result...

Theorem (Main result)

v = w ] on [0,T ]× (0,∞)d × [0, 1].

Aim: Prove the result by relying on dual arguments only!
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The backward algorithm as a lower and upper bound

(1) The backward algorithm as a lower bound

Proposition

v ≥ w ] on [0,T ]× (0,∞)d × [0, 1].

Proof. Use the definition of the Legendre Fenchel transform and
argue by induction.

(2) The backward algorithm as a upper bound
This is the more involved part...

Proposition

v ≤ w ] on [0,T ]× (0,∞)d × [0, 1].
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The backward algorithm as a upper bound

Idea of the proof.
Fix 0 ≤ i ≤ n − 1 and let (t, x , p) ∈ [ti , ti+1)× (0,∞)d × [0, 1].

Step 1. Prove by induction that a convexification in the dynamic
programming algorithm holds, i.e.

v(t, x , p) = inf
α∈At,p

EQt,x
[
co[v ∨ g ]

(
ti+1,X

t,x
ti+1

,Pt,p,α
ti+1

)]
.

where for a given function f , co[f ] is its closed convex envelope.

Step 2. Prove by induction the probabilistic representation of the
dual function, i.e. there exists ᾱ ∈ At,p such that

w ](t, x , p) = EQt,x

[
co[w ] ∨ g ]

(
ti+1,X

t,x
ti+1

,Pt,p,ᾱ
ti+1

)]
.
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The backward algorithm as a lower and upper bound

The backward algorithm as a upper bound (cont.)

To prove Step 2. we have, by proceeding backward, to:
(a) prove a decomposition in simple terms of (w ] ∨ g)] and
(w ] ∨ g)]],

(b) study the subdifferential of (w ] ∨ g)].

(c) find a particular value p in the subdifferential of w(ti , ·),

(d) apply a martingale representation argument between the
elements of the subdifferential of (w ] ∨ g)] at ti+1 and p at ti (cf.
European case). Be careful we have to study the limits of w ] in p!
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The backward algorithm as a upper bound (cont.)

Example: fix (t, x , p) ∈ [tn−1,T )× (0,∞)d × [0, 1].

(1) Decomposition
We know from (a)

w(t, x , q) = EQt,x [(qQt,x ,1
T − g(T ,X t,x

T ))+]

= EQt,x [g ]
(
ti+1,X

t,x
ti+1

, qQt,x ,1
ti+1

)
] .

(2) Study of the subdifferential
It can be proved using the Lebesgue theorem that

D+
q w(t, x , q) = P[qQt,x ,1

T ≥ g(T ,X t,x
T )]

D−q w(t, x , q) = P[qQt,x ,1
T > g(T ,X t,x

T )] .

leading to D+
q w(t, x , ·) ≥ 0 if q ≥ 0 and D−q w(t, x , ·) ≥ 0 if q > 0,

limq↑∞D+
q w(t, x , q) = 1, D+

q w(t, x , 0) = pmin(t, x).
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The backward algorithm as a upper bound (cont.)

(3.a) Martingale representation for p ∈ (pmin(t, x), 1).
From (2) ∃ q̃ ∈ (0,∞) s.t. (pmin(t, x), 1) lies in the subdifferential
of w(·, q̃).

This implies that

p = λP[q̃Qt,x ,1
T ≥ g(T ,X t,x

T )] + (1− λ)P[q̃Qt,x ,1
T > g(T ,X t,x

T )] .

with λ ∈ [0, 1], lies in the subdifferential of w(t, x , ·) at q̃. By the
martingale representation theorem, ∃ ᾱ ∈ At,p s.t.

λ1
q̃Qt,x,1

T ≥g(T ,X t,x
T )

+ (1− λ)1
q̃Qt,x,1

T >g(T ,X t,x
T )

= p +

∫ ti+1

t
ᾱ>s dWs =: Pt,p,ᾱ

ti+1
.
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The backward algorithm as a upper bound (cont.)

Applying [4, Chapter I, Proposition 5.1] we have,

w ](t, x , p) = q̃p − w(t, x , q̃)

= EQt,x

[
Pt,p,ᾱ
ti+1

q̃Qt,x ,1
ti+1
− g ]

(
ti+1,X

t,x
ti+1

, q̃Qt,x ,1
ti+1

)]
= co[g ]

(
ti+1,X

t,x
ti+1

,Pt,p,ᾱ
ti+1

)
.

(3.b) Martingale representation for p ∈ [0, pmin(t, x)] and p = {1}.
As [0, pmin(t, x)] belongs to the subdifferential of w(t, x , ·) at 0
and pmin(t, x) = D+

q w(t, x , 0) we can find λ ∈ [0, 1] such that
p = λD+

q w(t, x , 0). We then proceed as in (3.a).

The case p = 1 requires the study of the limit at p = 1 of w ].
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The backward algorithm as a lower and upper bound

For all the technical details feel free to visit our paper on arXiv:
http://arxiv.org/abs/1409.8219
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Thank you!
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